A popular material in metal strain gauge manufacture is a copper−nickel−manganese alloy, which is known by the trade name of "Advance." Semiconductor types have piezoresistive elements, which are considered in greater detail in the next section. Compared with metal gauges, semiconductor types have a much superior gauge factor (up to 100 times better) but are more expensive. Also, while metal gauges have an almost zero temperature coefficient, semiconductor types have a relatively high temperature coefficient. In use, strain gauges are bonded to the object whose displacement is to be measured. The process of bonding presents a certain amount of difficulty, particularly for semiconductor types. The resistance of the gauge is usually measured by a d.c. bridge circuit, and the displacement is inferred from the bridge output measured. The maximum current that can be allowed to flow in a strain gauge is in the region of 5 to 50 mA depending on the type. Thus, the maximum voltage that can be applied is limited and, consequently, as the resistance change in a strain gauge is typically small, the bridge output voltage is also small and amplification has to be carried out. This adds to the cost of using strain gauges.

Comments

Popular posts from this blog

Khasiat Fadhilat (Isnad) Doa Haikal - Majmu' Syarif

Remembrance - Zikr